中国·大阳城集团(app666·VIP认证)娱乐网站-BinG百科

熊斌宇(能源动力专业、副教授)

发布时间:2019-02-25

  

  

  姓名:熊斌宇

   

  

  邮箱:bxiong2@whut.edu.cn

   

  

  职称:副教授/博士生导师

   

  

  研究方向:储能系统运行与控制、锂离子电池、全钒液流电池、人工智能、机器学习

   

  

  主讲课程:电气工程基础

   

  

  博士指导专业:交通信息工程及控制

   

  

  硕士指导专业:电气工程、控制科学与工程

  

   
  
 教师简介
  熊斌宇,副教授,IEEE会员。2010年获武汉大学电气工程学院学士学位,2011年获新加坡南洋理工大学电力系统硕士学位,2016年新加坡南洋理工大学电力系统博士学位。主要研究方向为储能技术、锂离子电池、全钒液流电池、人工智能、机器学习等。

  近年来主持国家自然科学基金面上项目1项、青年基金项目1项、湖北省自然科学基金青年基金1项、新能源与储能与性控制国家重点实验室开放基金1项和企业横向项目多项。先后接收发表SCI/EI论文20余篇。IEEE PES中国区电动汽车技术委员会动力电池技术分委会理事;《Journal of Power Sources》、《Applied Energy》、《IEEE Transactions on Industrial Electronics》等期刊审稿人。

  指导学生获得2020年“兆易创新杯”中国研究生电子设计竞赛,商业计划书专项,一等奖;2019年“西门子杯”中国智能制造挑战赛指导教师,智能制造创新研发类赛项,全国初赛,特等奖;2019年“西门子杯”中国智能制造挑战赛,优秀指导教师。

  

  

  
  
  
 教学科研情况

     

  代表性教学项目:


  [1] 新工科建设引领下的电气工程专业智慧实验室建设方案研究,湖北省高校实验室研究项目,2021.9-2023.9

  [2] 电气工程专业类课程思政教学建设方案研究,武汉理工大学,2021.01-2021.12

  [3] 基于电气工程专业的综合实验教学体系构建方案研究,武汉理工大学,2020.01-2021.12

  [4] 电气工程基础在线课程建设方案研究,武汉理工大学,2019.01-2020.12



  代表性科研项目:


  [1] 国家自然科学基金面上项目,规模化多堆全钒液流电池储能系统容量失衡机理与非对称协同抑制方法研究,2022.01-2025.12,在研,主持

  [2] 国家自然科学基金面上项目,kW级车载热电发电分布式能源系统热电耦合机理与能效优化研究,2019.01-2023.23,在研,参与

  [3] 国家自然科学基金项目青年基金,全钒液流电池储能系统建模及其全生命周期运行策略优化研究,2018.01-2020.12,结题,主持

  [4] 湖北省技术创新重大项目,下一代车用锂离子动力电池全生命周期智能管理系统研发,2018-2020,结题,参与

  [5] 湖北省自然科学基金项目青年基金,全钒液流电池系统运行优化策略的研究,2017.01-2018.12,结题,主持

  [6] 中央高校基本科研业务费资助,全钒液流电池系统模型仿真及其能效分析,2017.01-2018.12,结题,主持

  [7] 新能源与储能与性控制国家重点实验室开放基金,全钒液流电池储能电站全生命周期寿命预测技术及多目标控制策略研究,2018.9-2019.12,结题,主持

  [8] 国网鄂州供电公司,售电量智慧预测分析工具技术服务,2020.09-2021.09,结题,主持

  

   

    

   

    

 论文、专利、著作情况

     

  代表性论文:


  [1] B. Xiong, S. Dong, Y. Li, J. Tang, Y. Su and H. B. Gooi, "Peak Power Estimation of Vanadium Redox Flow Batteries Based on Receding Horizon Control," in IEEE Journal of Emerging and Selected Topics in Power Electronics, doi: 10.1109/JESTPE.2022.3152588.

  [2] B. Xiong, Y. Ding, Q. Zhang, S. Shi, H. Zhang & Y. Su (2022) Finite element-based analysis of composite serpentine flow channel 3D modeling of vanadium redox flow battery, International Journal of Green Energy, DOI: 10.1080/15435075.2021.2007390.

  [3] R. Xiong, B. Xiong, Q. Zhang, S. Shi, Y. Su & D. Zhang (2022) Capacity Fading Model of Vanadium Redox Flow Battery Considering Water Molecules Migration, International Journal of Green Energy, DOI: 10.1080/15435075.2021.2015599.

  [4] J Tang , Xiong B* , Li Y , et al. Faulted Feeder Identification Based on Active Adjustment of Arc Suppression Coil and Similarity Measure of Zero-Sequence Currents[J]. IEEE Transactions on Power Delivery, 2021, PP(99):1-1.

  [5] Li Y , Xiong B , Vilathgamuwa D M , et al. Constrained Ensemble Kalman Filter for Distributed Electrochemical State Estimation of Lithium-Ion Batteries[J]. IEEE Transactions on Industrial Informatics, 2020, PP(99).

  [6] Li Y , Vilathgamuwa M , Choi S S , Xiong B* , et al. Design of Minimum Cost Degradation-Conscious Lithium-Ion Battery Energy Storage System to Achieve Renewable Power Dispatchability[J]. Applied Energy, 2020, 260:114282.

  [7] Li, Y, Xiong, B* , Su, Y, Tang, J, Leng, Z. Particle Swarm Optimization-Based Power and Temperature Control Scheme for Grid-Connected DFIG-Based Dish-Stirling Solar-Thermal System. Energies 2019, 12, 1300.

  [8] Xiong B , Yang Y , Tang J , et al. An Enhanced Equivalent Circuit Model of Vanadium Redox Flow Battery Energy Storage Systems Considering Thermal Effects[J]. IEEE Access, 2019, 7:162297-162308.

  [9] Y. Li, Z. Wei, B. Xiong and D. M. Vilathgamuwa, "Adaptive Ensemble-Based Electrochemical-Thermal-Degradation State Estimation of Lithium-Ion Batteries," in IEEE Transactions on Industrial Electronics, doi: 10.1109/TIE.2021.3095815.

  [10] Hou, H. , Wang, Y. , Xie, C. , Xiong B. , et al. A dispatching strategy for electric vehicle aggregator combined price and incentive demand response[J]. IET Energy Systems Integration.

  [11] Z. Wei, J. Hu, H. He, Y. Li and B. Xiong, "Load Current and State-of-Charge Coestimation for Current Sensor-Free Lithium-Ion Battery," in IEEE Transactions on Power Electronics, vol. 36, no. 10, pp. 10970-10975, Oct. 2021, doi: 10.1109/TPEL.2021.3068725.

  [12] Y. Li, S. S. Choi, D. M. Vilathgamuwa, B. Xiong and J. Tang, "Combined Primary Frequency and Virtual Inertia Response Control Scheme of a Variable-Speed Dish-Stirling System," in IEEE Access, vol. 8, pp. 151719-151730, 2020, doi: 10.1109/ACCESS.2020.3017791.

  [13] Shi Y , Eze C , Xiong B , et al. Recent development of membrane for vanadium redox flow battery applications: A review[J]. Applied Energy, 2019, 238(MAR.15):202-224.

  [14] Wang Y , John T , Xiong B . A two-level coordinated voltage control scheme of electric vehicle chargers in low-voltage distribution networks[J]. Electric Power Systems Research, 2019.

  [15] Xiong B , Zhao J , Su Y , et al. State of Charge Estimation of Vanadium Redox Flow Battery Based on Sliding Mode Observer and Dynamic Model Including Capacity Fading Factor[J]. IEEE Transactions on Sustainable Energy, 2017, 8(4):1658-1667.

  [16] Wei Z, Meng S, Xiong B, et al. Enhanced online model identification and state of charge estimation for lithium-ion battery with a FBCRLS based observer [J] Applied Energy, 2016, 181:332-341.

  [17] Wei, Z. B, Zhao, J. Y, Xiong B. Y, et al. Dynamic electro-thermal modeling of all-vanadium redox flow battery with forced cooling strategies [J] Applied Energy,2014,135: 1-10

  [18] Xiong B, Zhao J, Wei Z, et al. Extended Kalman filter method for state of charge estimation of vanadium redox flow battery using thermal-dependent electrical model [J] Journal of Power Sources, 2014, 262 (262):50–61.

  [19] Xiong B, Zhao J, Tseng K J, et al. Thermal hydraulic behavior and efficiency analysis of an all-vanadium redox flow battery [J] Journal of Power Sources, 2013, 242(35):314–324.

  [20] Yu K, Xiong B, Zhao J. A comprehensive study of space vector pulse‐width modulation technique for three‐phase Z‐source inverters [J] International Journal of Circuit Theory & Applications, 2015, 44(2):364-381.

  [21] Wu J, Chan C K, Zhang Y, Xiong B,et al. Prediction of solar radiation with genetic approach combing multi-model framework [J] Renewable Energy, 2014, 66(3):132-139.

  [22] Wei Z, Zhao J, Skyllas-Kazacos M, Xiong B, et al. Dynamic thermal-hydraulic modeling and stack flow pattern analysis for all-vanadium redox flow battery [J] Journal of Power Sources, 2014, 260(7):89-99.

  [23] Zhang Y, Zhao J, Wang P, M Skyllas-Kazacos, Xiong B, et al. A comprehensive equivalent circuit model of all-vanadium redox flow battery for power system analysis [J] Journal of Power Sources, 2015, 290:14-24.

  [24] Zhang Y, Zhao J, Wang P, Xiong B, et al. Partial‐Load Analysis of a Temperature‐Controlled Solid‐ Oxide Fuel Cell–Gas Turbine (SOFC–GT) Hybrid Power Plant [J] Energy Technology, 2015, 3(6):601-617.

  [25] Sun M , Su Y , Xiong B , et al. Online Model Identification Method of Vanadium Redox Flow Battery Based on Time-varying Forgetting Factor Recursive Least Squares[C]// 2019 Chinese Automation Congress (CAC). IEEE, 2020.

  [26] Tang J , Xiong B , Li Y , et al. An Optimized Decentralized Control Strategy of Grid-Connected Residential Photovoltaic Inverters Based on Voltage Sensitivity Matrix[C]// 2019 8th International Conference on Renewable Energy Research and Applications (ICRERA). 2019.

  [27] Tang J , Xiong B , Yang C , et al. Development of an Integrated Power Distribution System Laboratory Platform Using Modular Miniature Physical Elements: A Case Study of Fault Location[J]. Energies, 2019, 12(19):3780-.

  [28] Zhang Y , Xiong B , Tang J , et al. An Electro-Thermal Coupled Model of Vanadium Redox Flow Battery for Large-scale Energy Storage System[C]// 2019 IEEE 10th International Symposium on Power Electronics for Distributed Generation Systems (PEDG). IEEE, 2019.

  [29] Wang Z , Xiong B , Tang J , et al. Multi-parameter Optimization Strategy for Vanadium Redox Flow Battery Operation Based on Genetic Algorithm[C]// 2019 IEEE 10th International Symposium on Power Electronics for Distributed Generation Systems (PEDG). IEEE, 2019.

  [30] Xiong B , Wang Z , Li Y , et al. An Optimal Operational Strategy for Vanadium Redox Flow Battery Based on Particle Swarm Optimization[C]// 2019 IEEE Innovative Smart Grid Technologies - Asia (ISGT Asia). IEEE, 2019.

  [31] Shen G , Su Y , Zhang D , Zhang H , B Xiong et al. Secure and Fine-grained Electricity Consumption Aggregation Scheme for Smart Grid[J]. Ksii Transactions on Internet & Information Systems, 2018, 12(4):1553-1571.

   

  

  代表性专利:


  [1] 熊斌宇,潘劲轩,李旸,唐金锐,谢长君,侯慧. 基于特征筛选和高斯过程回归的锂电池健康状态估计方法[P]. 湖北省:CN113189490A,2021-07-30.

  [2] 熊斌宇,张少凤,张华军,张清勇,李旸,苏义鑫. 基于主成分分析和LSTM神经网络的电力负荷预测方法[P]. 湖北省:CN113139605A,2021-07-20.

  [3] 熊斌宇,方应家,张清勇,唐金锐,李旸,苏义鑫. 一种基于混合整数线性规划的家庭能量管理优化方法[P]. 湖北省:CN113131519A,2021-07-16.

  [4] 熊斌宇,董思迪,李旸,苏义鑫,张清勇,唐金锐. 一种基于滚动时域算法的全钒液流电池峰值功率估计方法[P]. 湖北省:CN112800708A,2021-05-14.

  [5] 熊斌宇,丁宇明,李旸,张清勇,唐金锐,张华军. 一种复合蛇形流道结构及含有其的全钒液流电池[P]. 湖北省:CN112768721A,2021-05-07.

  [6] 熊斌宇,熊瑞,李旸,唐金锐,张清勇,苏义鑫. 一种考虑水分子迁移的全钒液流电池容量衰减建模方法[P]. 湖北省:CN112447266A,2021-03-05.

  [7] 熊斌宇,刘正奇,贾婉清,孙妙云,唐金锐,张华军,李旸,张清勇. 全钒液流电池等效电路模型参数识别方法. 湖北省:CN201911347362.7

  [8] 熊斌宇,杨叶森,刘正奇,李旸,唐金锐,苏义鑫,谢长君,陈继忠. 一种基于电热耦合的全钒液流电池储能系统等效方法. 湖北省:CN201910522665.1

  [9] 熊斌宇,黄宇超,刘正奇,王子睿,苏义鑫,谢长君. 一种基于遗传算法的全钒液流电池储能系统运行优化方法. 湖北省:CN201910383916.2

  [10] 熊斌宇,刘天,刘正奇,王子睿,苏义鑫,张华军,谢长君. 一种基于粒子群算法的全钒液流电池储能系统运行优化方法. 湖北省:CN201910383941.0 

  [11] 熊斌宇,刘正奇,贾婉清,孙妙云,唐金锐,张华军,李旸,张清勇. 全钒液流电池等效电路模型参数识别方法[P]. 湖北省:CN110968976A,2020-04-07.

   

 培养条件

             

  [1] 提供依托团队: 智能控制与智能系统研究中心


  [2] 依托平台:湖北省新能源动力电池工程技术研究中心,AESA先进储能科学与应用联合实验室(https://www.aesalab.net/),武汉理工大学京津冀协同沧州研究院

  

  

  

 招生要求

      

       [1] 具有电气工程/控制背景优先

       [2] 具有主动学习能力、积极乐观者优先